Themengebiete Niedersachsen und Bremen

Jahrgang 9

Zusätzlich zu einem der Jahrgangsstufe entsprechenden chemischen Grundwissen können u.a. folgende Themen relevant sein:

- Gefahrstoffsymbole
- chemisches und stöchiometrisches Rechnen
- Atombau
- Aufstellen von Reaktionsgleichungen
- Bohrsches Schalenmodell der Atomhülle

Jahrgang 10

Zusätzlich zu den für Jahrgang 9 genannten Themengebieten können u.a. folgende Themen relevant sein:

- Ionenbildung
- Ionenverbindungen/Salze
- Redoxreaktionen
- Molekülverbindungen und Molekülgeometrie
- Säuren und Laugen

Beispielaufgaben 9. Klasse

Zeichne die Struktur eines Ammoniak-Moleküls (NH3).

Kreuze die wahren Aussagen über gasförmigen Ammoniak an:

- a) gut löslich in Wasser
- b) trigonal pyramidale Molekülgeometrie
- c) wird bei 0 °C und 1 bar flüssig
- d) bei Standardbedingungen ein guter elektrischer Leiter
- e) starkes Treibhausgas
- f) ist eine organische Verbindung

Antwort: a), b), e)

-Festes Calciumhydroxid besitzt die Eigenschaft, der Luft Kohlenstoffdioxid zu entziehen. Dabei bildet sich ein neuer Stoff. Für ein Experiment werden auf einer Petrischale 0,142 g Calciumhydroxid platziert. Stelle die Reaktionsgleichung für die beschriebene Reaktion auf und berechne die Masse des Reaktionsproduktes, wenn das Calciumhydroxid auf der Petrischale vollständig reagiert hat. Beschreibe einen Nachweis für Kohlenstoffdioxid mit einer Calciumhydroxidlösung.

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$; In einer Calciumhydroxidlösung ist das Calciumhydroxid gelöst, die Lösung ist klar. Wird CO_2 durch die Lösung geleitet, entsteht schwer lösliches Calciumcarbonat, welches aus der Lösung ausfällt. Die Lösung wird trüb.

$$m_{CaCO_3} = M_{CaCO_3} \cdot n_{CaCO_3} = M_{CaCO_3} \cdot \frac{m_{Ca(OH)_2}}{M_{Ca(OH)_2}} = 192 \ mg$$

Beispielaufgaben 10. Klasse

Titantetrachlorid ist eine stark rauchende, gelbe Flüssigkeit, die mit Wasser aus der Luft reagiert und dabei Titandioxid bildet. Um Titandioxid wieder aufzulösen kann es mit Kaliumhydrogensulfat in der Schmelze erhitzt werden. Stelle die Reaktionsgleichung für beide Reaktionen auf und nenne die Reaktionsart von der Reaktion mit Kaliumhydrogensulfat. Berechne die Masse des entstehenden Titandioxids, wenn 4,07 g Titantetrachlorid vollständig mit Wasser umgesetzt werden.

 $TiCl_4 + 2 H_2O \rightarrow TiO_2 + 4 HCl$

$$TiO_2 + KHSO_4 \rightarrow Ti(OH)_2SO_4 + K_2SO_4 + H_2O$$

$$m_{TiO_2} = M_{TiO_2} \cdot n_{TiO_2} = M_{TiO_2} \cdot \frac{m_{TiCl_4}}{M_{TiCl_4}} = 1,71 \ g$$

- -Kreuze die auf Magnesium zutreffenden Aussagen an:
- a) brennt mit einer grellen, roten Flamme
- b) das bei der Verbrennung gebildete Produkt reagiert basisch
- c) brennt ohne Sauerstoff unter reiner Stickstoffatmosphäre
- d) brennt ohne Sauerstoff unter reiner CO₂-Atmosphäre
- e) brennt ohne Sauerstoff unter reiner Xenonatmosphäre
- f) ein Magnesiumbrand ist nicht mit Wasser löschbar
- g) das Verbrennungsprodukt bildet mit Wasser eine elektrisch leitfähige Lösung

Antwort: b), c), d), f), g)

-Wird an eine Magnesiumchloridlösung eine Spannung von 3 V angelegt, so ist am Pluspol die Entstehung eines grüngelben Gases und am Minuspol die Entstehung eines farblosen Gases zu beobachten. Außerdem beobachtet man die Entstehung einer basischen Lösung. Würde man jedoch beide Gase zusammen zur Reaktion bringen, so würde das Reaktionsprodukt in Wasser eine sehr starke Säure ergeben. Nenne diese Säure und notiere die ablaufenden Reaktionen am Plus- und Minuspol.

Pluspol: 2 Cl⁻ \rightarrow Cl₂ + 2 e⁻

Minuspol: $2 H_2O + 2 e^{-} \rightarrow 2 OH^{-} + H_2$

Säure: Salzsäure